

Computational neuroscience: biophysics - Lecture 4

Blue Brain Project EPFL, 2024

Ion channels

Lecture Overview

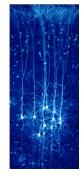
- Scope
- Approaches
- Applications

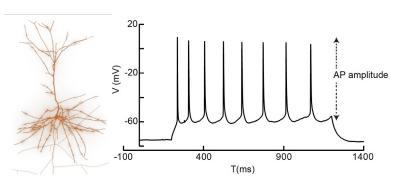
Lecture Overview

Scope

- Why ion channels exist?
- O What is an ion channel?
- How does it function

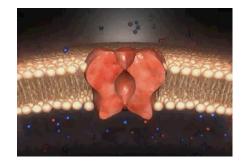
Approaches

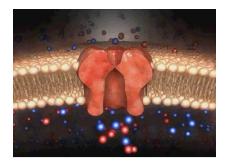

- How do we study ion channels
- How do we model and simulate ion channel


Applications

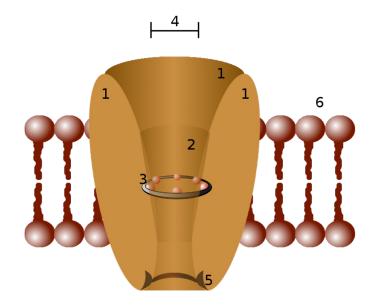
- Areas of research in ion channels
- Channelopathies
- Automated ion channel characterization
- □ □ □ □ □ Web resources

Why ion channels?



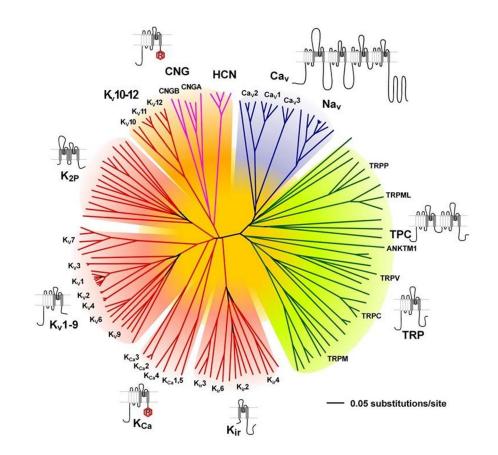


The function of the brain depends on the ability of neurons to transmit electrochemical signals to other cells, and their ability to respond appropriately to electrochemical signals received from other cells.



What is an ion channel?

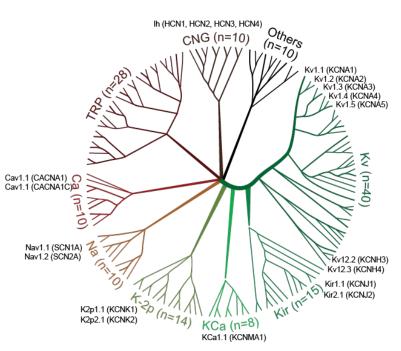
- Membrane proteins
- Water-filled pore
- Permeable to ions
- Specificity
- The pore can be opened or closed by electrical, mechanical, or chemical signals


Schematic diagram of an ion channel. 1 - channel domains (typically four per channel), 2 - outer vestibule, 3 - selectivity filter, 4 - diameter of selectivity filter, 5 - phosphorylation site, 6 - cell membrane.

https://en.wikipedia.org/wiki/lon_channel

Classification

- Classification by gating
 - Voltage-gated, ligand-gated, ...
- Classification by the main ion
 - K+, Na+, Ca²⁺, Cl⁻, ...
- IUPHAR International Union of Basic and Clinical Pharmacology
- Around 350 ion channel types known in mammals (most of them expressed in the brain)
 - ~150 voltage gated
 - ~90 ligand gated
 - >100 others

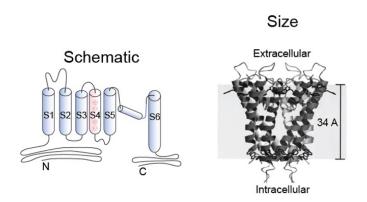


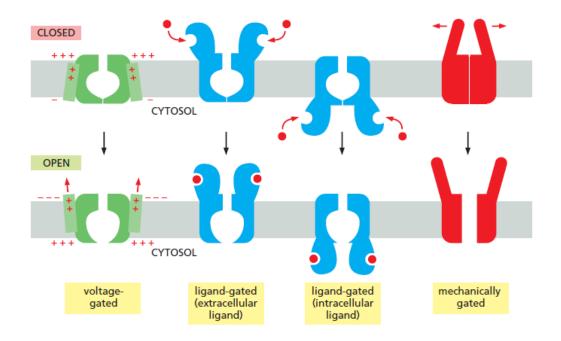
Classification

Drosophila naming (old)

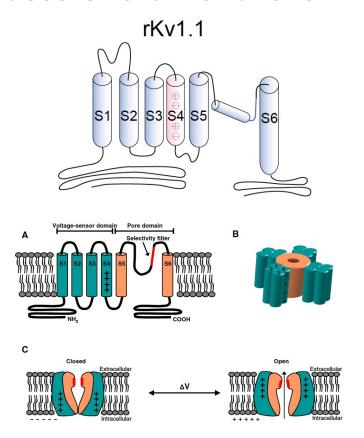
- Shaker (Kv1) Leg-shaking behavior when flies were anesthetized. Ref PMID :20636, Proc R Soc Lond B Biol Sci, 1977
- Shab (Kv2) Ref PMID :2493160, Science, 1989
- Shaw (Kv3) Ref PMID :2493160, Science, 1989
- Shal (Kv4) Ref PMID :2493160, Science, 1989
- Erg (Kv10)
 Ether-a-go-go related genes. Leg shaking behavior when flies were anesthetized with ether. Ref PMID :5807804, Genetics, 1969
- Elk (Kv12) Ether-a-go-go-like
- Eag (Kv11) Ether-a-go-go

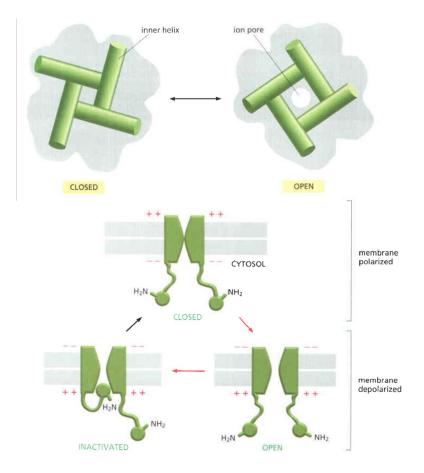
Current naming

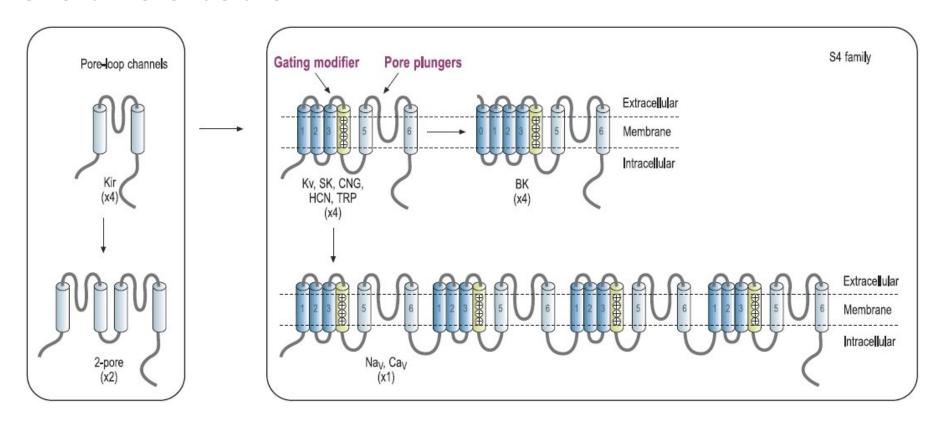

Membrane permeability

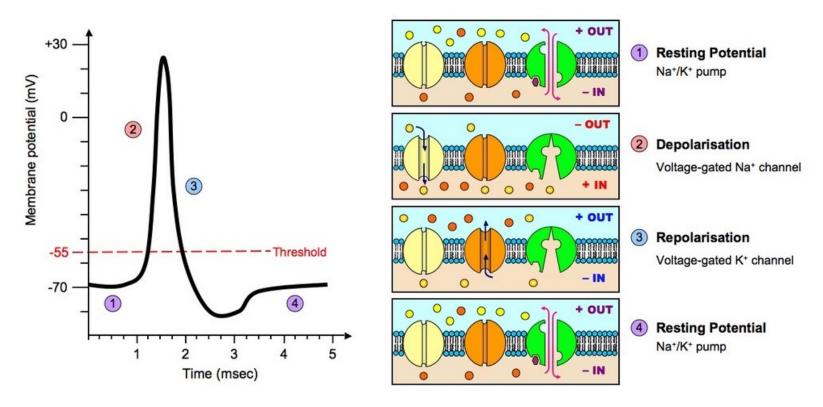

Protein-free lipid bilayers are impermeable to ions high permeability External membrane 10² Surface O_2 CO_2 lipid concentration **HYDROPHOBIC** gradient N_2 bilaver Lipid bilayer **MOLECULES** steroid hormones simple channeltransporter- H_2O **ENERGY SMALL** diffusion mediated mediated UNCHARGED urea **POLAR** glycerol (A) PASSIVE TRANSPORT ACTIVE TRANSPORT 10-4 **MOLECULES** NH_3 urea glycerol LARGE glucose UNCHARGED sucrose **POLAR** tryptophan ----**MOLECULES** glucose OUTSIDE H⁺ Na⁺ HCO₃ IONS - 10⁻¹⁰ K⁺ Ca²⁺ INSIDE CI^-Mq^{2+} - 10⁻¹² electrochemical gradient with concentration a membrane potential gradient (with no synthetic (B) membrane potential) lipid --- 10⁻¹⁴ bilaver low permeability

How does it function?


- Voltage-gated ion channels
- Ligand-gated
- Mechanically gated




How does ion channel function?



ion channel structure

Role of ion channels in single cell

http://www.vce.bioninja.com.au/aos-2-detecting-and-respond/coordination--regulation/nervous-system.html

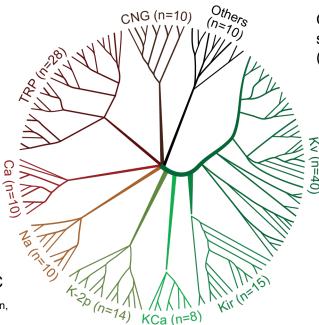
Role of ion channels

Ion channels and transporters save our cells from osmotic death

No cell could exist without ion channels

(Differentiation, proliferation, secretion, apoptosis, migration, adhesion, invasion, excitability etc.)

Ion channels make cells electrically active


Heartbeat is controlled by specific electrical impulses – Cardiac action potential, the direct result of cardiac ion channel function.

lon channels/receptors transduce light into electrical signals. (TRP, CNG)

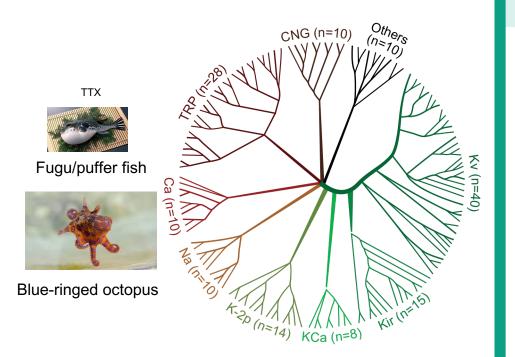
Auditory system has to convert sound waves into electrical signals. MET,TMC channels

Mechanoelectrical transduction.

Transmembrane channel like

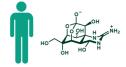
Odor perception is a result of electrical signals generated by olfactory neurons. (CNG channels, Nav1.7)

Food and taste – Otopetrin (sour taste), TRP (cold, hot, bitter, sweet), ENaC (salty taste)


Touch – Mechanosensitive ion channels. Piezo channels

Pain sensation – Nav, Kir, ASIC, TRP, P2X channels

Muscle movements are controlled by electrical impulses, dependent on ion channel function

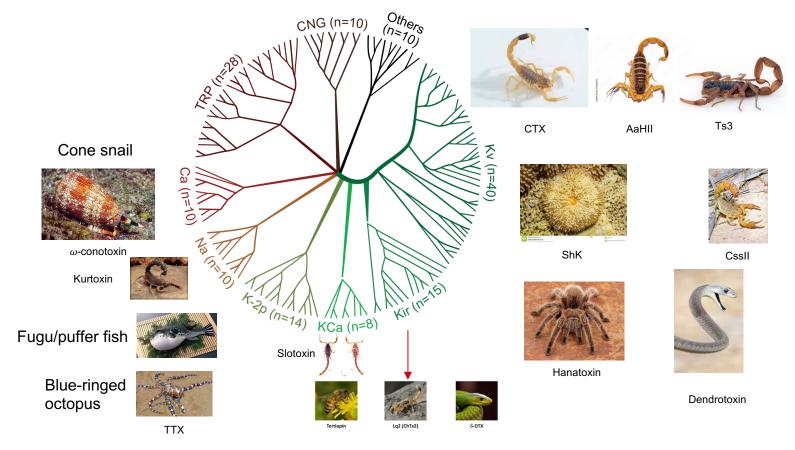

Toxins

FUGU & TETRODOTOXIN

Tetrodotoxin is produced by bacteria that live in pufferfish. The parts of the fish which contain high levels of the toxin must be skillfully removed before eating. Tetrodotoxin is heat stable so can't be broken down by cooking.

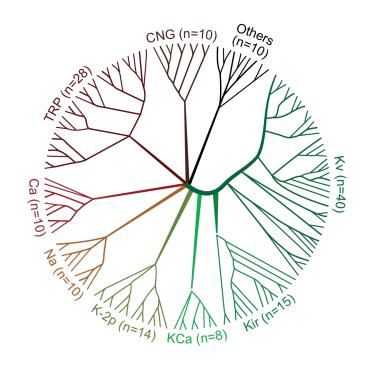
causes loss of sensation, paralysis, respiratory arrest, and death.

The estimated median lethal dose of tetrodotoxin is 0.33 milligrams per kilogram of body weight. There is no known antidote for the toxin.


© Andy Brunning/Compound Interest 2018 - www.compoundchem.com | Twitter: @compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

system messages

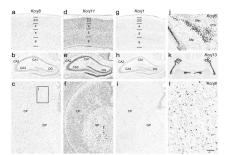
Toxins


Summary

- Ion channels are protein molecules that allow ions to pass through the membrane
- Ion channels can be specific to cation or anion (Na+, K+, Ca^{2+,} Cl-)
- Two main groups of ion channels are voltage-gated and ligand-gated ion chanenls
- Voltage-gated ion channels have fundamental interactive role in cell signalling
- Most common K+ channels are tetramers
- Na/Ca channel alpha subunit is a single peptitde of four homologous domains

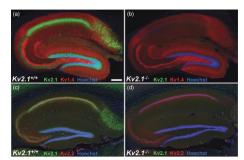
Lecture Overview

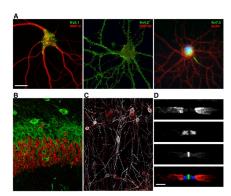
- Scope
- Approaches
 - How do we study ion channels?
 - O How do we model/simulate ion channels?
- Applications



Approach

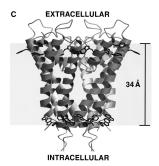
Gene expression


In-situ hybridization


Shcherbatyy V, et.al.; A digital atlas of ion channel expression patterns in the two-week-old rat brain. Neuroinformatics. 2015

Protein expression

Immunohistochemistry

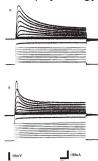

Speca D. et.al.; Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav. 2014

Jensen CS, et.al.; Neuronal trafficking of voltagegated potassium channels. Mol Cell Neurosci. 2011

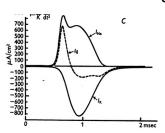

Protein structure

X-ray crystallography

Doyle DA, MacKinnon R. et.al.; The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998


Protein modelling

Khalili-Araghi F, et.al.; Dynamics of K+ ion conduction through Kv1.2. Biophys J. 2006


Protein Kinetics

Electrophysiology

Salkoff, L., Wyman, R. Genetic modification of potassium channels in Drosophila Shaker mutants. Nature 293, 228–230 (1981)

Conductance modelling

HODGKIN AL, HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952

Awards, Discoveries, Nobel Prize

The Nobel Prize in Physiology or Medicine 1963

Sir John Carew Eccles, Alan Lloyd Hodgkin and Andrew Fielding Huxley "for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central portions of the nerve cell membrane"

The Nobel Prize in Physiology or Medicine 1991

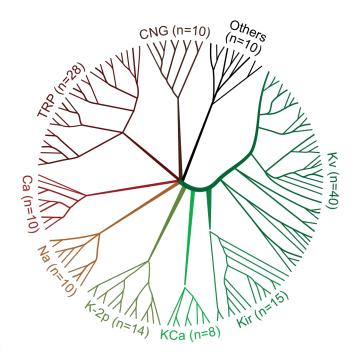
Erwin Neher and Bert Sakmann "for their discoveries concerning the function of single ion channels in cells"

The Nobel Prize in Chemistry 2003

"for discoveries concerning channels in cell membranes"

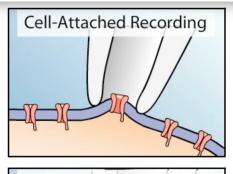
Peter Agre "for the discovery of water channels"

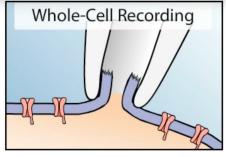
Roderick MacKinnon "for structural and mechanistic studies of ion channels"

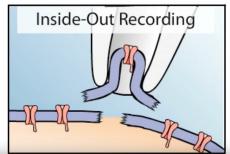


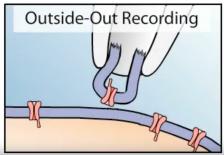
The Nobel Prize in Physiology or Medicine 2021

David Julius and Ardem Patapoutian "for their discoveries of receptors for temperature and touch".

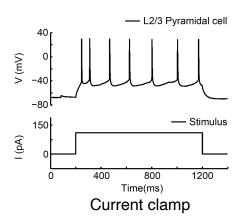

David discovered TRPV1 receptor that detects pain and heat Ardem discovered Piezo1 and Piezo2, essential for sensing mechanical stimuli such as pressure and touch

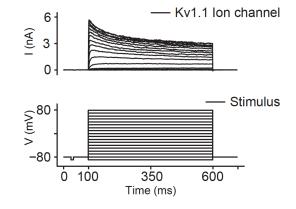



Approach


To study ion channels

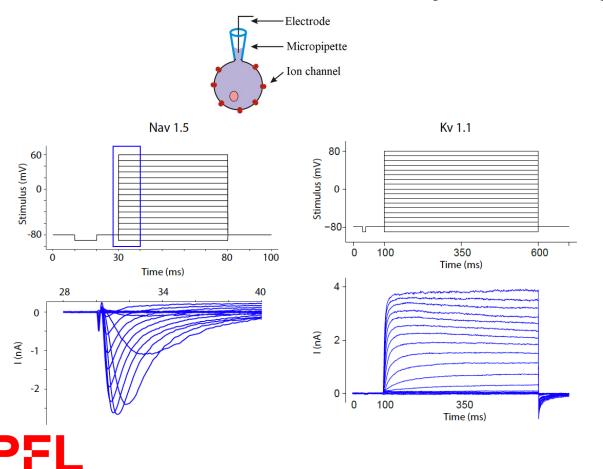
Patch clamp

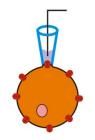


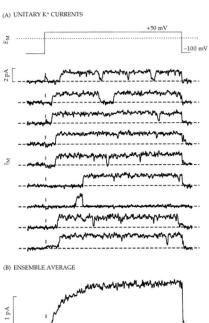


https://www.youtube.com/watch?v=mVbkSD5FHOw

Erwin Neher and Bert Sakmann were awarded Nobel Prize in 1991

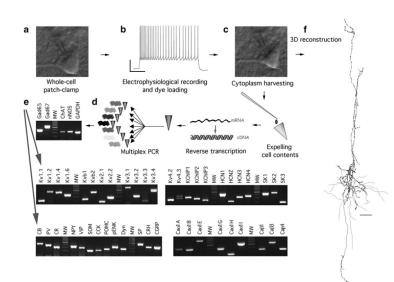




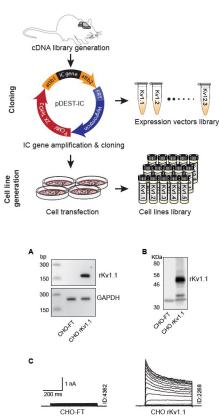

Voltage clamp

Experiments

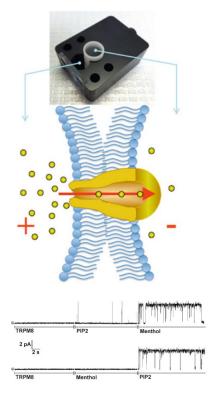
Whole cell Vs Single channel recording



Time (ms)


Ion channel experiments

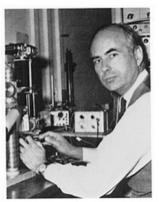
Neurons

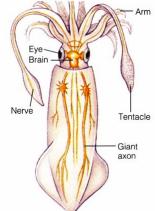

- Toledo-Rodriguez and Markram, Single-Cell RT-PCR, a Technique to Decipher the Electrical, Anatomical, and Genetic Determinants of Neuronal Diversity. Methods in molecular biology. 2014;1183:143-158
- Korngreen A, Sakmann B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol. 2000;525 Pt 3(Pt 3):621–639.

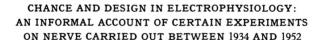
Cell lines

Ranjan R, Logette E, Marani M, et al. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front Cell Neurosci. 2019:13:358.

Lipid bilayers


Zakharian E. Recording of ion channel activity in planar lipid bilayer experiments. Methods Mol Biol. 2013;998:109–118.


Biophysical model of ionic currents


Sir Alan Hodgkin, 1949 The Journal of Physiology, Vol. 263, No. 1

Sir Andrew Huxley, 1974

J. Physiol. (1976), 263, pp. 1-21 With 7 text-figures Printed in Great Britain

By A. L. HODGKIN

From the Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG

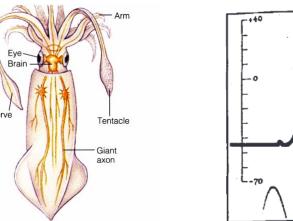
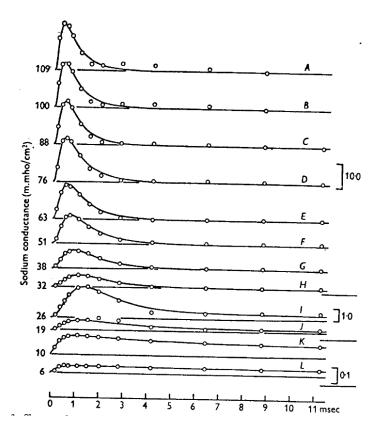
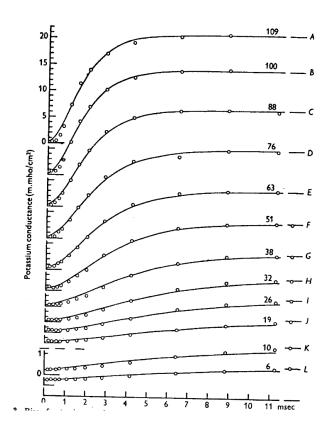


Fig. 2.

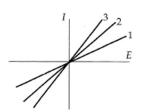

ACTION POTENTIAL RECORDED BETWEEN INSIDE AND OUTSIDE OF AXON. TIME MARKER, 500 CYCLES/SEC. THE VERTICAL SCALE INDICATES THE POTENTIAL OF THE INTERNAL ELECTRODE IN MILLIVOLTS, THE SEA WATER OUTSIDE BEING TAKEN AT ZERO POTENTIAL.


HODGKIN, A., HUXLEY, A. Action Potentials Recorded from Inside a Nerve Fibre. Nature 144, (1939)

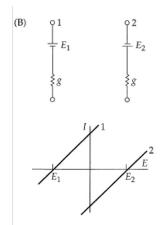
Hodgkin AL & Huxley AF (1952) A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. J Physiol 117: 500-544.

Biophysical model of ionic currents

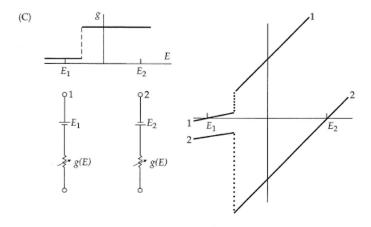
Hodgkin AL & Huxley AF (1952) A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. J Physiol 117: 500-544.


Ion channel conductance

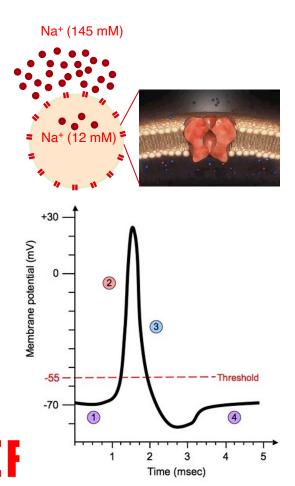
Ohm's law


$$E = I * R$$

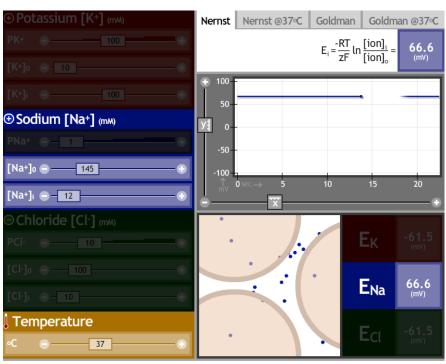
$$E = I * \frac{1}{g}$$
 $I = g * E$


 $(A) \qquad \begin{matrix} 1 & & \downarrow 2 & & \downarrow 3 \\ & & & \downarrow 2g & & \downarrow & 3g \end{matrix}$

E potential difference (volts, V) I current (amperes, A) R resistance (ohms, Ω) g conductance (siemens, S)



$$I_{Na} = g_{Na}(E) * (E-E_{Na})$$
$$I_{k} = g_{k}(E) * (E-E_{k})$$



Nernst potential

Nernst equation

 $\frac{https://www.azps.life/home/2016/4/28/teaching-spotlight-nernstgoldman-simulator}{https://www.azps.life/s/ngswin.zip}$

Standalone app still works on Windows

Nernst potential

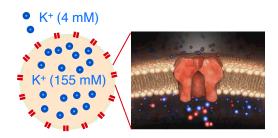
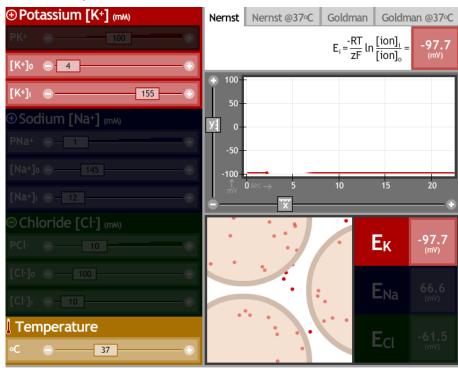



TABLE 1.3 Free Ion Concentrations and Equilibrium Potentials for Mammalian Skeletal Muscle

Ion	Extracellular concentration (mM)	Intracellular concentration (mM)	$\frac{[Ion]_{o}}{[Ion]_{i}}$	Equilibrium potential ^a (mV)
Na ⁺	145	12	12	+67
K+	4	155	0.026	-98
Ca ²⁺	1.5	100 nm	15,000	+129
Cl-	123	4.2^{b}	29^{b}	-90^{b}

 $[^]a$ Calculated from Equation 1.11 at 37°C.

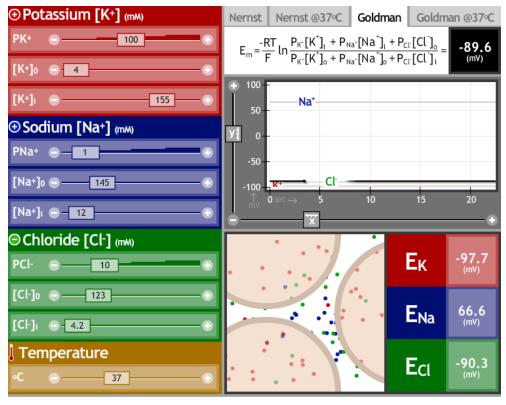
Nernst equation

https://www.azps.life/s/ngswin.zip

 $[^]b$ Calculated assuming a –90-mV resting potential for the muscle membrane and that Cl $^{\!\!\!-}$ ions are at equilibrium at rest.

Goldman-Hodgkin-Katz equation

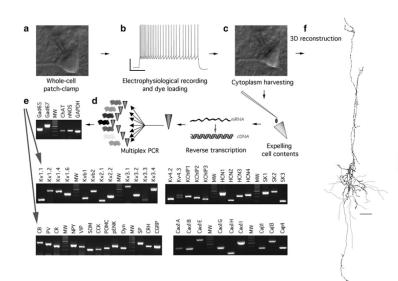
TABLE 1.3 Free Ion Concentrations and Equilibrium Potentials for Mammalian Skeletal Muscle


Ion	Extracellular concentration (mm)	Intracellular concentration (mm)	$\frac{[\mathrm{Ion}]_{\mathrm{o}}}{[\mathrm{Ion}]_{\mathrm{i}}}$	Equilibrium potential ^a (mV)
Na ⁺	145	12	12	+67
K^+	4	155	0.026	-98
Ca ²⁺	1.5	100 nm	15,000	+129
Cl-	123	4.2^{b}	29^{b}	-90^{b}

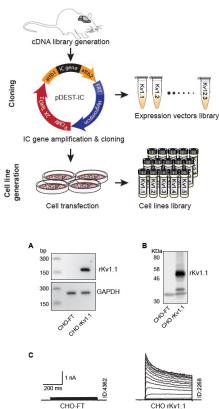
^aCalculated from Equation 1.11 at 37°C.

 $[^]b\mathrm{Calculated}$ assuming a –90-mV resting potential for the muscle membrane and that Cl $\dot{}$ ions are at equilibrium at rest.

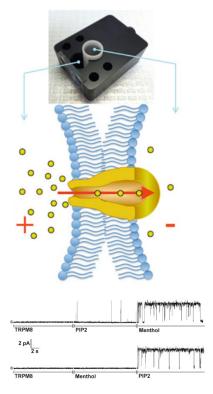
Goldman-Hodgkin-Katz equation



https://www.azps.life/s/ngswin.zip

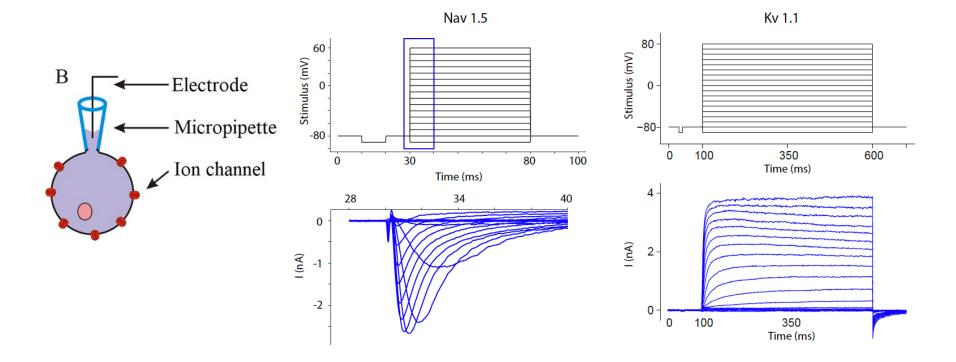

Ion channel experiments

Neurons

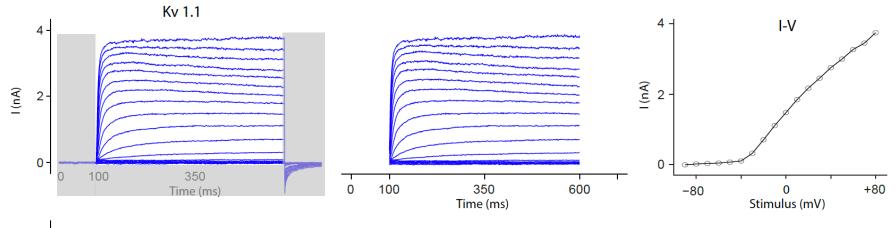

- Toledo-Rodriguez and Markram, Single-Cell RT-PCR, a Technique to Decipher the Electrical, Anatomical, and Genetic Determinants of Neuronal Diversity. Methods in molecular biology. 2014;1183:143-158
- Korngreen A, Sakmann B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol. 2000;525 Pt 3(Pt 3):621–639.

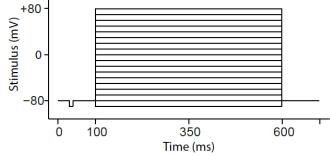
Cell lines

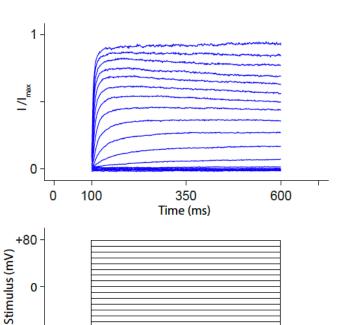
Ranjan R, Logette E, Marani M, et al. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front Cell Neurosci. 2019:13:358.

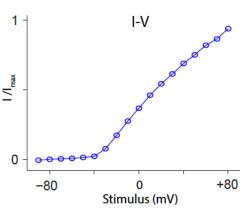

Lipid bilayers

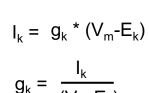
Zakharian E. Recording of ion channel activity in planar lipid bilayer experiments. Methods Mol Biol. 2013;998:109–118.

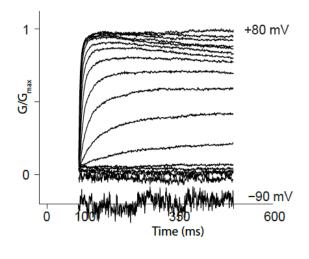



Experiments


Ion channel experiment


Ion channel experiment

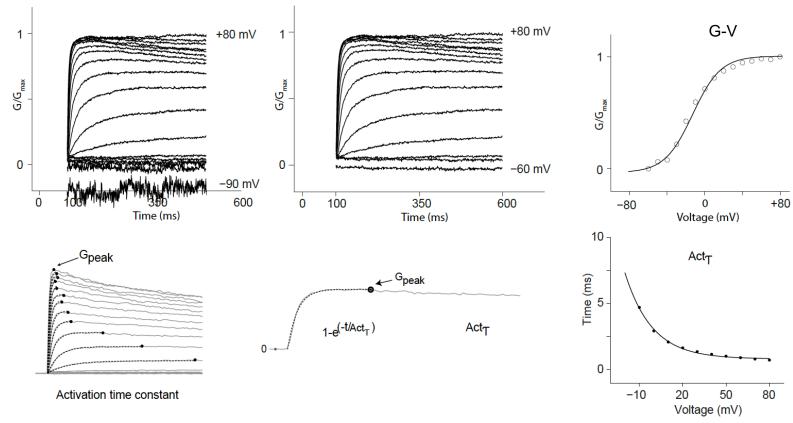



350

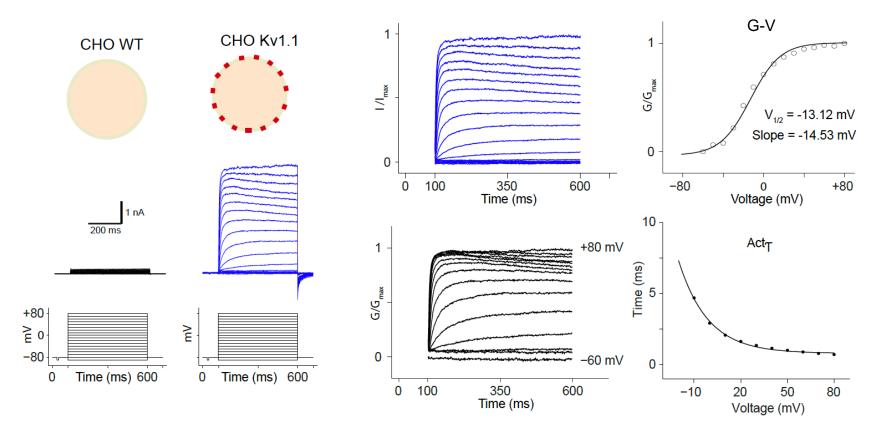
Time (ms)

600

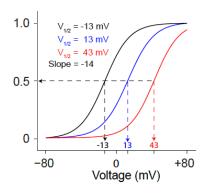
$$G_{k(v=-90)} = \frac{I_{k(v=-90)}}{(-90 - (-98))}$$

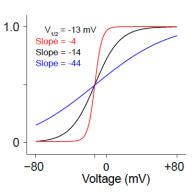

$$G_{k(v=+80)} = \frac{I_{k(v=+80)}}{(+80 - (-98))}$$

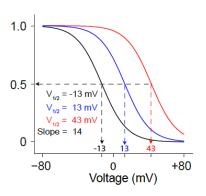
-80

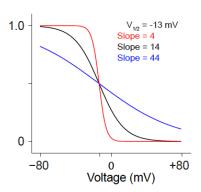

100

Kinetic characterization

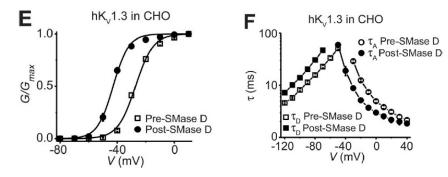


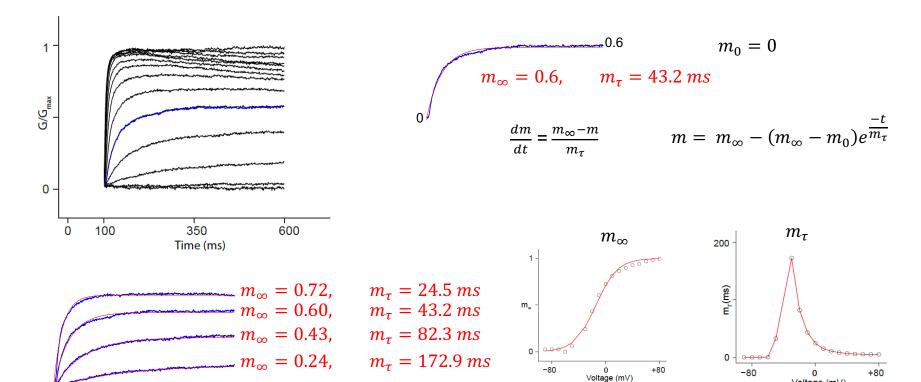

Kinetic characterization



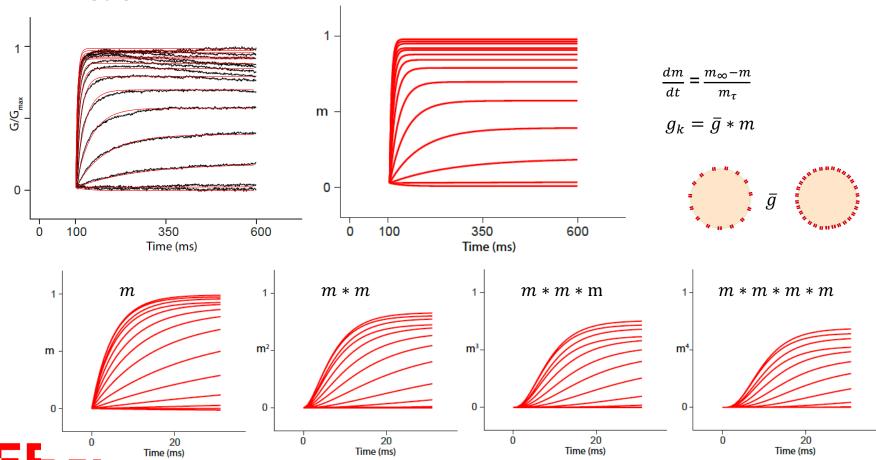


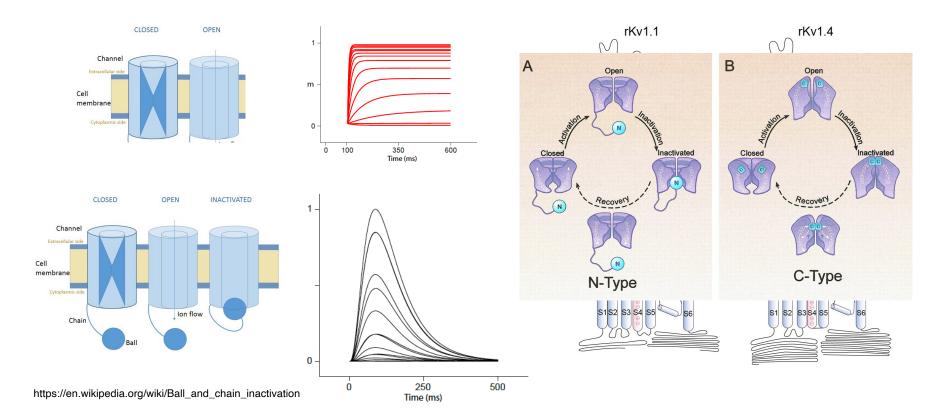
Boltzmann sigmoid function




$$G/G_{max}(V) = \frac{1.0}{1.0 + e^{\left(\frac{V - V_{1/2}}{Slope}\right)}}$$

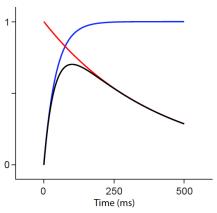
Combs DJ, Shin HG, Xu Y, Ramu Y, Lu Z. Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase. J Gen Physiol. 2013;142(4):367–380.


H-H model



Voltage (mV)

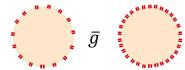
H-H model

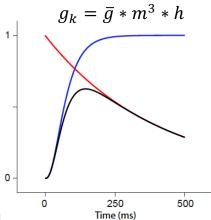


Ion channel inactivation

Ion channel model with inactivation gate

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{m_{\tau}}$$


$$\frac{dh}{dt} = \frac{h_{\infty} - h}{h_{\tau}}$$


$$g_k = \bar{g} * m * h$$

$$m_0 = 0$$
, $m_{\infty} = 1.0$, $m_{\tau} = 43.2 \text{ ms}$

$$h_0 = 1$$
, $h_{\infty} = 0$, $h_{\tau} = 400 \ ms$

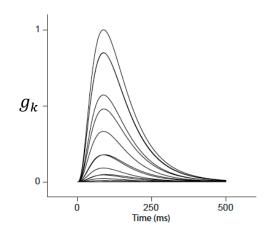
$$m_0 = 0 h_0 = 1$$

$$m_{\infty} = 1.0$$

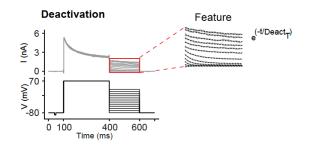
$$m_{\tau} = 43.2 ms$$

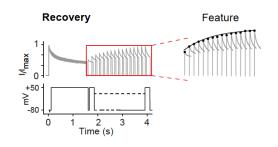
$$h_{\infty} = 0$$

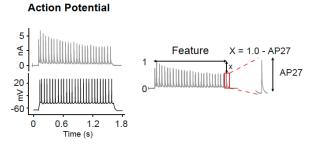
$$h_{\infty} = 0$$
 $h_{\tau} = 400ms$

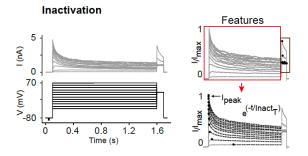

$$m_0 = 0 \quad h_0 = 1$$

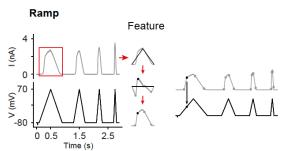
$$m_{\infty} = f1(v)$$

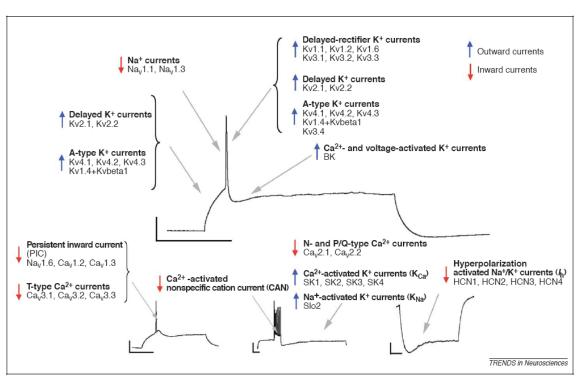

$$m_{\tau} = f2(v)$$


$$h_{\infty} = f3(v)$$


$$h_{\tau} = f4(v)$$




Detailed kinetic characterization



Ion channels in Neurons

Toledo-Rodriguez, M. Cellular signalling properties in microcircuits (2005) Trends in Neurosciences

Passive cell model

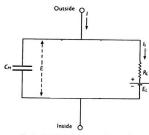
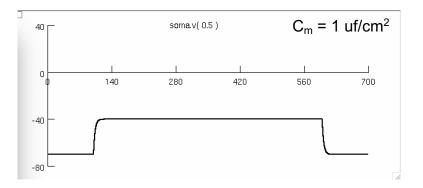
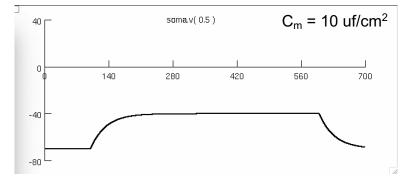




Fig. 1. Electrical circuit representing membrane.

```
{load file("nrngui.hoc")}
   This function is used for voltage plot
   Required Inputs: 1. what to plot like soma.v(0.5)
              2. Color (0..9)
              3. Brush (1..4)
obfunc plotVoltage(){ localobj grph
   grph = new Graph(0)
   grph.addexpr("",$s1,$2,$3)
   graphList[0].append(grph)
   grph.view(0, -80, tstop, 120,300, 75, 800, 325)
   grph.label(0.4,0.9,$s1)
   grph.label(0.9,0.55,"Time(ms)")
   grph.label(0.1,0.9,"V(mV)")
   return grph
create soma
access soma
L=18.8
nseg=1
diam=18.8
Ra = 123.0
cm = 1.0
v init = -70
insert pas
g_pas=.0003
e pas=-70
objectvar stim
stim = new IClamp(0.5)
stim.del = 100
stim.dur = 500
stim.amp = 0.1
tstop =700
plotVoltage("soma.v( 0.5 )",1, 2)
init()
run()
```

Passive cell

Active cell model with H-H channels

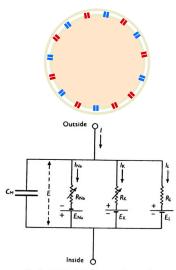
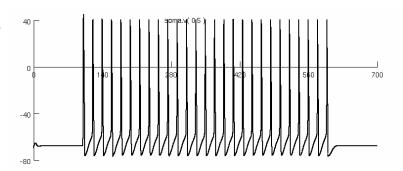



Fig. 1. Electrical circuit representing membrane.

Hodgkin AL & Huxley AF (1952) A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. J Physiol 117: 500–544.

```
This function is used for voltage plot
    Required Inputs: 1. what to plot like soma.v(0.5)
               2. Color (0..9)
               3. Brush (1..4)
obfunc plotVoltage(){ localobj grph
    grph = new Graph(0)
   grph.addexpr("",$s1,$2,$3)
   graphList[0].append(grph)
    grph.view(0, -80, tstop, 120,300, 75, 800, 325)
   grph.label(0.4,0.9,$s1)
   grph.label(0.9,0.55,"Time(ms)")
    grph.label(0.1,0.9,"V(mV)")
   return grph
create soma
access soma
L=18.8
nseg=1
diam=18.8
Ra = 123.0
v init = -70
insert pas
g pas=.0003
e pas=-70
insert bh
gnabar hh = 0.4
gkbar hh = 0.1
objectvar stim
stim = new IClamp(0.5)
stim.del = 100
stim.dur = 500
stim.amp = 0.127
tstop =700
plotVoltage("soma.v( 0.5 )",1, 2)
init()
run()
```

Passive cell + H-H channels

Active cell model with H-H channels (Mod files)

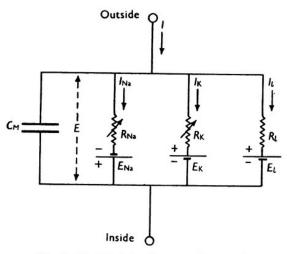
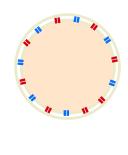
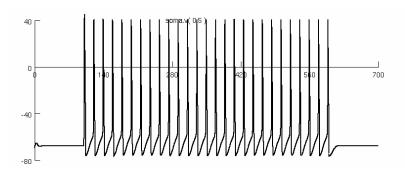




Fig. 1. Electrical circuit representing membrane.

Hodgkin AL & Huxley AF (1952) A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. J Physiol 117: 500–544.

Passive cell + H-H Mod files

Lecture Overview

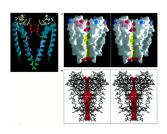
K Channel

```
STATE
    m
BREAKPOINT
    SOLVE states METHOD cnexp
    gKv3 = gKv3bar*m
    ik = gKv3*(v-ek)
DERIVATIVE states
    rates()
    m' = (mInf-m)/mTau
INITIAL{
    rates()
    m = mTnf
PROCEDURE rates(){
   UNITSOFF
        mInf = 1/(1+exp(((v - (18.700))/(-9.700))))
        mTau = 20.000/(1+exp(((v -(-46.560))/(-44.140))))
    UNITSON
```

```
STATE
                         Na Channel
BREAKPOINT {
   SOLVE states METHOD cnexp
   gNa_S = gNa_Sbar*m*m*h
   ina = gNa_S*(v-ena)
DERIVATIVE states {
   rates()
   m' = (mInf-m)/mTau
   h' = (hInf-h)/hTau
INITIAL{
   rates()
   m = mInf
   h = hInf
PROCEDURE rates(){
   UNITSOFF
       if(v == -25.0){
           v = v + 0.000001
       ^{\circ} mAlpha = (0.182 * ((v-10) - -35))/(1-(exp(-((v-10) - -35)/9)))
       if(v == -25.0){
           v = v + 0.000001
       mBeta = (0.124 * (-(v-10) -35))/(1-(exp(-(-(v-10) -35)/9)))
       mInf = mAlpha/(mAlpha + mBeta)
       mTau = 1/(mAlpha + mBeta)
       hInf = 1.0/(1+exp((v--65-10)/6.2))
       if(v == -40.0){
           v = v + 0.000001
       hTau = 1/((0.024 * ((v-10) - -50))/(1-(exp(-((v-10) - -50)/5))) +(0.0091 * (-(v-10)
        - 75.000123))/(1-(exp(-(-(v-10) - 75.000123)/5))))
   UNITSON
```


Summary

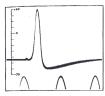
- Patch clamp experiment
- Voltage/Current clamp
- Whole cell, Single channel recordings
- Ion channel experiment in Neuron/Cell line
- Hodgkin-Huxley modelling
- Neuron simulation (Single cell)
- Neuron simulation with H-H channels
- Neuron simulation with mod files



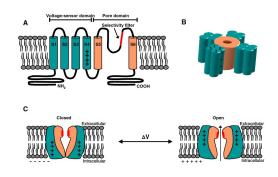
Lecture Overview

- Scope
- Approaches
- Applications

Key areas of ion channel research

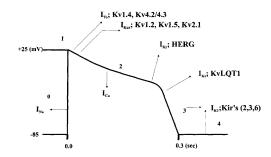

Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280(5360):69–77

Neuron 50, 89-100, April 6, 2006 @2006 Elsevier Inc. DOI 10.1016/j.neuron.2006.03.010

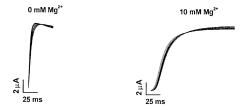

The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity

Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease

Ester Angulo,* Véronique Noé,† Vicent Casadó,* Josefa Mallol,* Teresa Gomez-Isla,‡ Carmen Lluis,* Isidre Ferrer,§¹¹ Carlos J. Ciudad†¹¹ and Rafael Franco*.¹¹

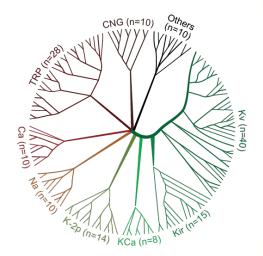


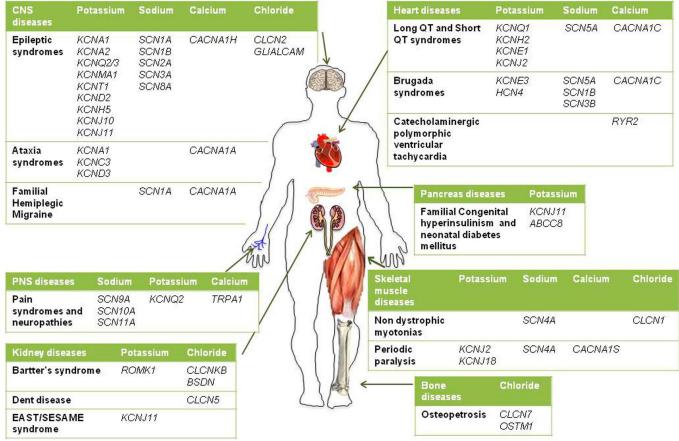
HODGKIN AL, HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. *J Physiol.* 1952;117(4):500–544. doi:10.1113/jphysiol.1952.sp004764



Voltage-gated K⁺ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients

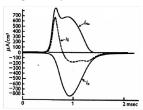
Alon Korngreen and Bert Sakmann


Brown, A. M. "Cardiac Potassium Channels in Health and Disease." Trends in Cardiovascular Medicine 7, no. 4 (May 1997): 118–24.



Silverman WR, Tang CY, Mock AF, Huh KB, Papazian DM. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol. 2000;116(5):663–678.

Channelopathies

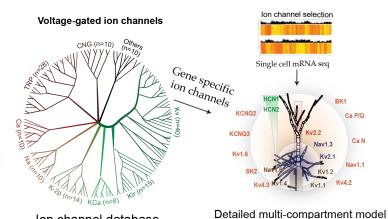


Imbrici P, et al. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol. 2016

Neuron modeling timeline

Single compartment model

First mathematical model of action potential initiation with Na⁺ and K⁺ conductances



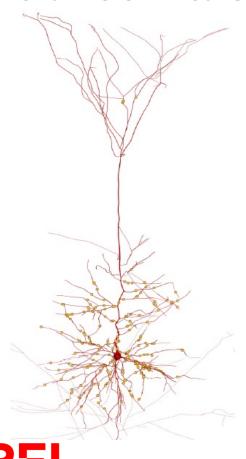
Hodgkin & Huxley1952

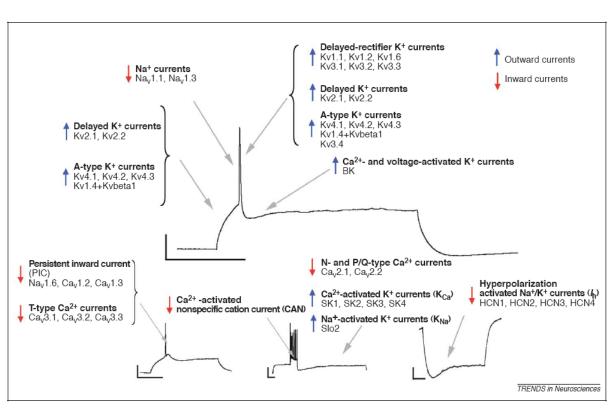
Past

Reconstructed morphology Multi-compartment model Kfast Role of generic ion channels in Cell morphology cell physiology, diseases, and kinetic modulation

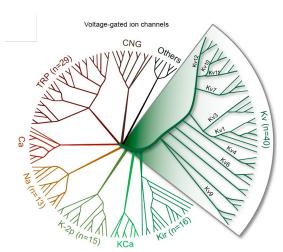
Detailed multi-compartment model with generic ion channels

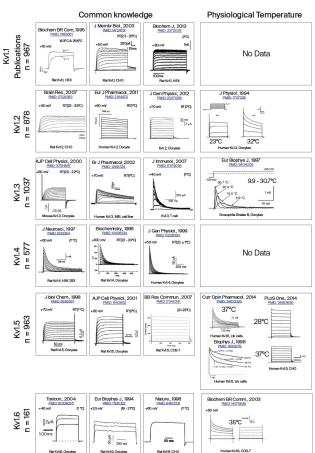
Role of **gene specific** ion channels in cell physiology, disease simulation, neuro modulation and in-silico drug screening

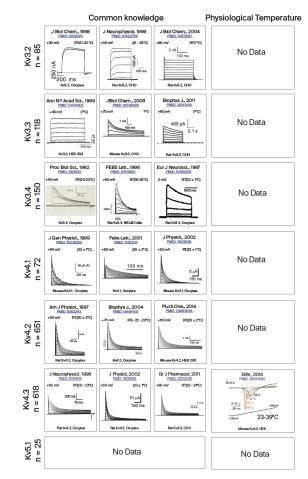

Present


Future

 $Image\ credits: www.nobel prize.org,\ The\ journal\ of\ physiology,\ Model DB,\ Neuro Morpho. Org$

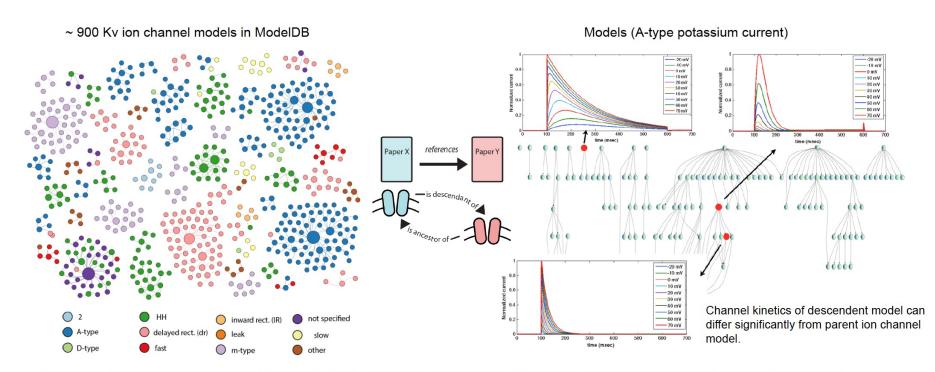

Ion channels in Neuron

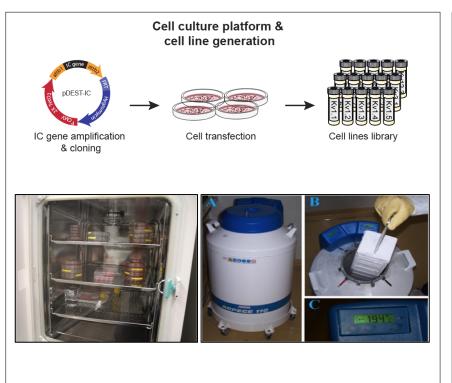


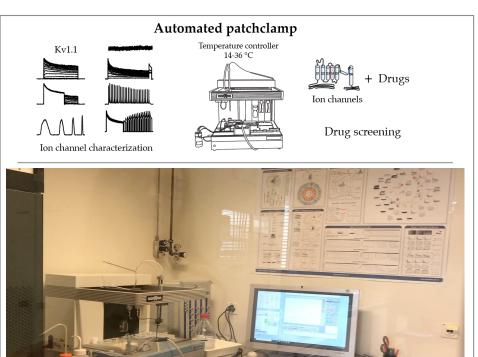


Toledo-Rodriguez, M. Cellular signalling properties in microcircuits (2005) Trends in Neurosciences

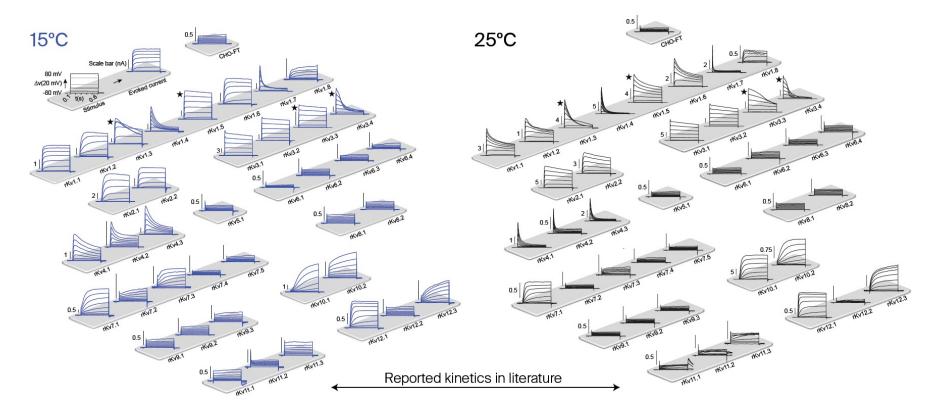
Literature overview



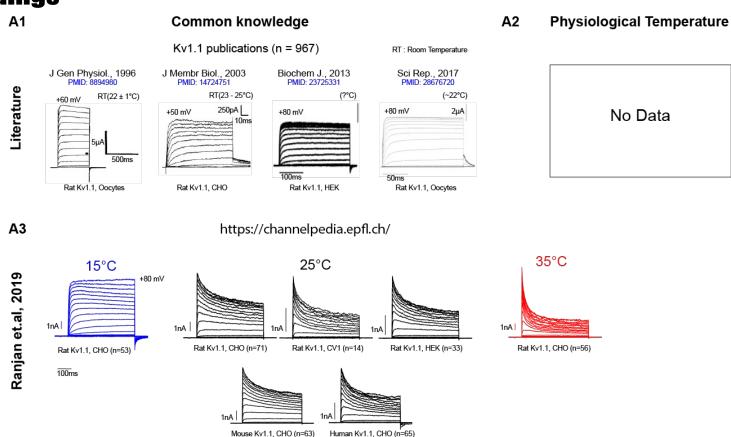

Ion channel models in literature



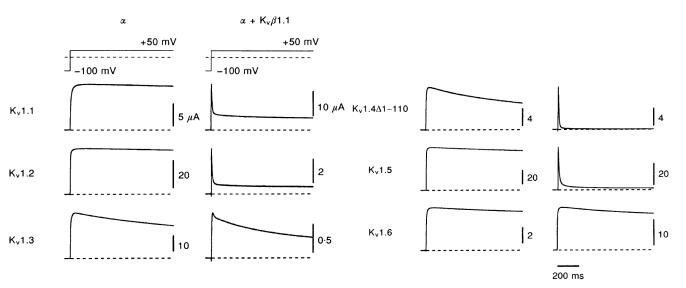
Podlaski, W.F., Seeholzer, A., Groschner, L.N., Miesenböck, G., Ranjan, R., and Vogels, T.P. (2017). Mapping the function of neuronal ion channels in model and experiment. ELife 6.

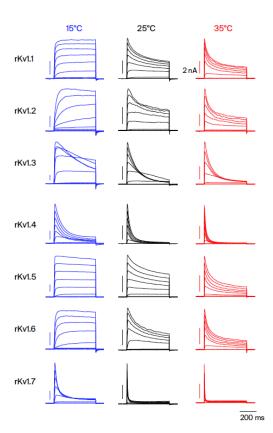

Automated ion channel characterization

Kinetics comparison



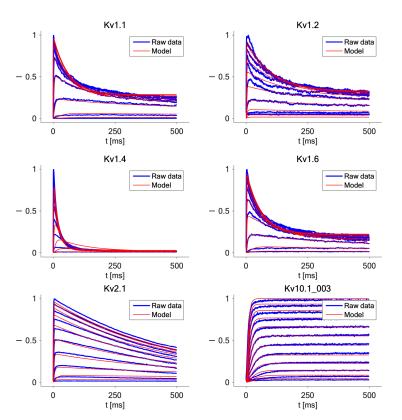
Kinetics near physiological temperature 15°c 25°c 35°c 35°C Kv1.1 Kv2.1 Kv1.4 ID:7976 Kv7.1

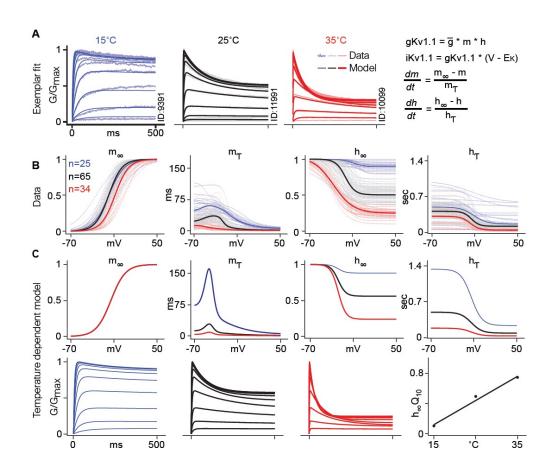

New findings



Kinetic modulation

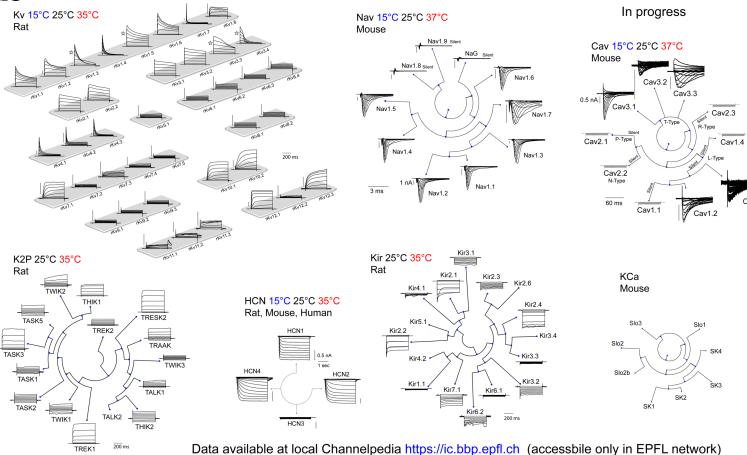
Kinetic modulation by β-subunit


Heinemann SH, Rettig J, Graack HR, Pongs O. Functional characterization of Kv channel beta-subunits from rat brain. J Physiol. 1996;493 (Pt 3):625–633.

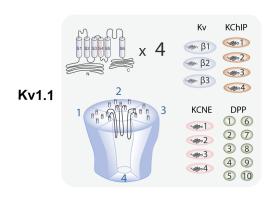


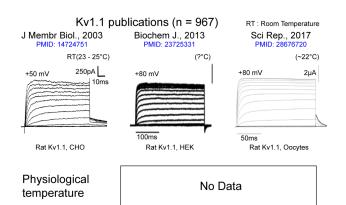
Ranjan et. al, 2019

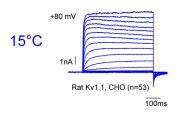
Temperature dependent model

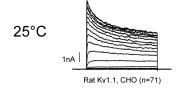


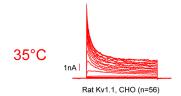
Ranjan R, Logette E, Marani M, et al. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front Cell Neurosci. 2019;13:358.


Current status

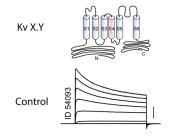


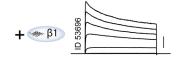

Current status CNG (n=10) Cav $\alpha_2 \delta$ KChIP Κv γ_1 γ_5 ~m1) γ_2 γ_6 γ_3 γ_7 ~m4 **Υ**₄ **Υ**₈ DPP 7 (n=14) KCa (n=8) Nav KCa BKCa x 4 SKCa

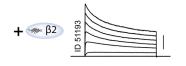

Current status

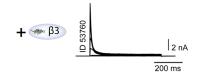


Ranjan et.al, 2019

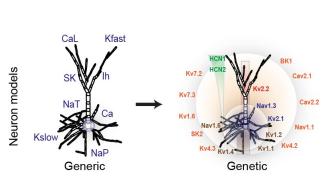







https://channelpedia.epfl.ch/

Kinetic modulation



Current status

SCIENTIFIC REPORTS

naturersesarch
To assess the contribution of axonal KvI channels on intrinsic neuronal excitability, we monitored the excitability of CA3 pyramidal cells before and after puffing the specific KvI.1 channel blocker, DTx-K or the broader spectrum KvI channel blocker, DTx-K.

specific Kv1.1 channel blocker, DTx-K

Cell Reports

2018

PMID: 29562186

To provide further clues about the channel subunit composition, we used toxins specific for one Kv1 subunit. Application of dendrotoxin-K (DTx-K; 1 μ M), a potent blocker for Kv1.1 (Robertson et al., 1996), had no effect (p > 0.05; Figure 4N;

DTx-K a potent blocker for Kv1.1

SCIENTIFIC REPORTS

2020 PMID: 32332769

cerebellar slices from mature GAD67-GFP mice to identify putative GABAergic-DCNs (GAD + DCN) we show that specific Kv1. Channel blockers (dendrotoxin-alphal/IK, DTSs) hyperpolarized the threshold of somatic action potentials, increased the spontaneous firing rate and hampered evoked high frequency

specific Kv1 channel blockers (DTxs)

PNAS

2021 PMID: 34799447

initial segment. Bath application of dendrotoxin-K (DTX-K), a selective blocker of Kv1.1 channels, leads to a larger excitability increase in control cultures than in deprived cultures. Focal puffing

DTx-K a selective blocker of Kv1.1

1996 PMID: 8612784 > FEBS Lett. 1996 Mar 25;383(1-2):26-30. doi: 10.1016/0014-5793(96)00211-6.

Novel effects of dendrotoxin homologues on subtypes of mammalian Kv1 potassium channels expressed in Xenopus oocytes

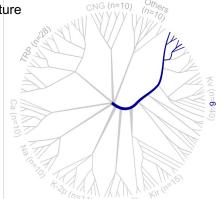
study. Firstly, while all three clones Kv1.1, 1.2 and 1.6 were blocked by toxin I, the closely related homologue toxin K was selective for Kv1.1. Thus toxin K will be useful in separating out the contributions from Kv1.1 subunits from other mammalian *Shaker*-family subunits in native cells, such as central neurones. Recent work [7] has shown that only one of the

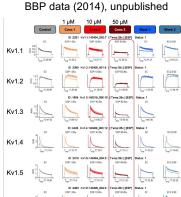
Drug Screening

- Drug screenings are currently performed on cell lines only at room temperature
- Only selected ion channels are used for drug screening

Escitalopram: - Antidepressant, Anxiety disorder

- Sold under brand names Cipralex and Lexapro


Escitalopram also does not bind to or has low affinity for various ion channels including Na⁺, K⁺, Cl⁻ and Ca⁺⁺ channels.


Orug Usage Statistics, United States, 2007 - 20	
க் ClinCalc.com » Pharmacy » ClinCalc DrugStats » Escitalopram Oxalate	
Number of Prescriptions Over Time (2007 - 201	7)

Facitalanuam Ovalata

20th most commonly prescribed medication in the United States with more than **25 million** prescriptions

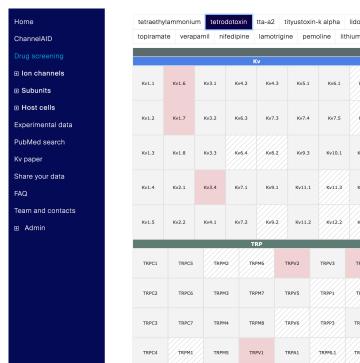
	Emergent Adverse Events:					
Incidence in Placebo-Controlled C	linical Trials for Generalized A	nxiety Disorde				
	(Percentage of Patients Reporting Event)					
Body System / Adverse Event	LEXAPRO (N=429)	Placebo (N=427)				
Autonomic Nervous System Disorders	((
Dry Mouth	9%	5%				
Sweating Increased	4%	1%				
Central & Peripheral Nervous System	Disorders					
Headache	24%	17%				
Paresthesia	2%	1%				
Gastrointestinal Disorders						
Nausea	18%	8%				
Diarrhea	8%	6%				
Constination	5%	4%				
Indigestion	3%	2%				
Vomiting	3%	1%				
Abdominal Pain	2%	1%				
Flatulence	2%	1%				
Toothache	2%	0%				
General						
Fatigue	8%	2%				
Influenza-like Symptoms	5%	4%				
Musculoskeletal						
Neck/Shoulder Pain	3%	1%				
Psychiatric Disorders						
Somnolence	13%	7%				
Insomnia	12%	6%				
Libido Decreased	7%	2%				
Dreaming Abnormal	3%	2%				
Appetite Decreased	3%	1%				
Lethargy	3%	1%				
Yawning	2%	1%				
Urogenital						
Ejaculation Disorder ^{1,2}	14%	2%				
Anorgasmia ³	6%	<1%				
Menstrual Disorder	2%	1%				

50 uM Escitalopram blocks all six (Kv1) ion channels by 60%

2017 > Korean J Physiol Pharmacol. 2017 Jul;21(4):415-421. doi: 10.4196/kjpp.2017.21.4.415. Epub 2017 Jun 26.

Escitalopram, a selective serotonin reuptake inhibitor, inhibits voltage-dependent K⁺ channels in coronary arterial smooth muscle cells

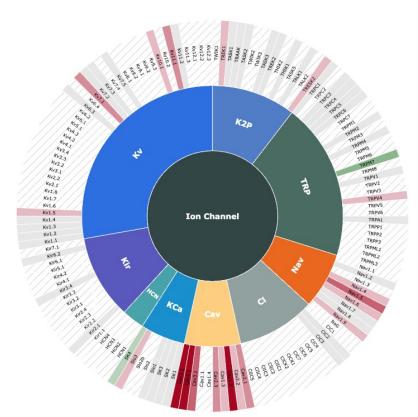
> Naunyn Schmiedebergs Arch Pharmacol. 2014 Jan;387(1):23-32. doi: 10.1007/s00210-013-0911-y. Epub 2013 Sep 18.


Escitalopram block of hERG potassium channels

> Acta Pharmacol Sin. 2010 Apr;31(4):429-35. doi: 10.1038/aps.2010.14. Epub 2010 Mar 15.

Open channel block of Kv1.5 currents by citalogram

Drug Screening on Literature Data


etraethyla opiramate		_	dotoxin fedipine	tta-a2 lamotr		in-k alpha moline			line e nbqx	scitalo apv	opram 4-am	retiga ninopyrid		valproate d7288	mibefra lacosamide		zapine Irotoxin-	k +				
								Ion Channe	el													
				Kv						K2	2P					Kir						
Kv1.1	Kv1.6	Kv3.1	Kv4.2	Kv4.3	Kv5.1	. Kv6.1	Kv6.2	TWIK1	TA	SK2	TWI	K2	TWIK3	Kir1.1	Kir2.4	4 Kii	r3.1	Kir3.2				
Kv1.2	Kv1.7	Kv3.2	Kv6.3	Kv7.3	8 Kv7.4	Kv7.5	Kv8.1	TREK1	т	ASK3	TH	iiK1	TASK5	Kir2.1	Kir3.	3 h	(ir4.2	Kir5.1				
								TASK1	т	REK2		TALK1		Kir2.2	Kir3:	4	Kir6.1					
Kv1.3	Kv1.8	Kv3.3	Kv6.4	Kv8.2	Kv9.3	Kv10.	1 Kv10.2	TRAAK	Ţ	HIK2		TALKZ	TRESK2	Kir2.3	Kir4.	.1	Kir6.2	Kir7				
Kv1.4	Kv2.1	Kv3.4	Kv7.1	Kv9.1	. Kv11.1	1 Kv11.;	3 Kv12.1		1///		CI	1////										
								CIC1	CIC4		CIC7	CICK1	CICK2	Cav2.1	. Cav1.2	Cav2.3	Cav1.1	Cav3.				
Kv1.5	Kv2.2	Kv4.1	Kv7.2	Kv9.2	Kv11.2	2 Ky12:	2 Kv12.3	CIC2	CIC2 CIC5													
				TRP				CICE	Cico		CIIC1	CIIC3 CIIC4	Cav2.2	2 Cav1.3	Cav1.4	Cav3.2	Cav3.					
TRPC1	TRPC5	TRPM	PM2 TRPM6		TRPV2	TRPV3	TRPV4	CIC3	cica	6 CIIC2					KCa	/////		HCN				
TRPC2	TRPC6	TRPM	12 7	RPM7	TRPV5	TRPP1	TRPP2	- Cics	Cico		Circs		Circs		CIICS		clics		SK2	SK3		HCN1
TIG CZ	110 00	IKI	.5	Kriii	TRF V J					, No.												HCN2
TRPC3	TRPC7	TRPM	14 T	RPM8	TRPV6	TRPP3	TRPML2	Nav1.1	Nav1.3	Na	v1.5	Nav1.7	Nav1.8	Slo	1 Slo2t	s Slo3		HCN3				
TRPC4	TRPM1	TRPM	(E)	TRPV1	TRPA1	TRPML1	TRPML3	Nav1.2	Nav1.4	Na	v1.6	Nav1.9	NaG	Slo	2			HCN4				

tetrodotoxin effect on Nav1.1

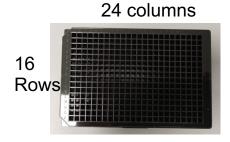
Pubmed Id	format	Nb citation	Effect	Dose Response	Study type	Subject	
34634134	Abstract	0	NA	NA .	HUMAN	Human donor tissue	
29470418	Full text	NA	CLOSE	NA	HUMAN I ANIMAL	DRG neurons Wistar rats	
34523364	Abstract	1	CLOSE	NA.	ANIMAL	mouse esophageal mechanoreceptors	
28450535	Full text	NA	CLOSE	500 nM -> significant reduction in A-CAP amplitude	ANIMAL	mice and pigtail monkeys (Macaca nemestrina)	
28832970	Full text	NA	CLOSE	10 nM TTX -> 72 ± 2% inhibition of Nav1.1 IC50 values not explicitly provided for Nav1.1	CELL	HEK293T cells	
22005676	Abstract	74	NA	NA	UNKNOWN	UNKNOWN	
25406007	Full text	40	CLOSE	ŊA	UNKNOWN	UNKNOWN	

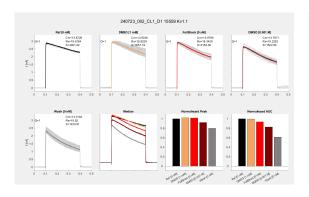
Drug Screening

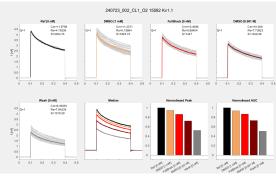
Identified drugs for screening

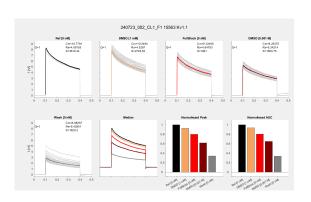
		DrugName	Reason	Info from Drugbank related to IC
	1	TEA	Potassium channel blocker	
_	2	TTX	Sodium channel blocker	
Priority	3	TTA-A2	T type CaV3 channel blocker	
\succeq	4	TitusToxin-K alpha	Kv1.2 specific blocker	
⋶	5	Lidocaine	Common anesthetic	NaV inhibitor
屲	6	Bicuculline	Synaptic blocker (GABA A)	
	7	Escitalopram	Antidepressant	no
First	8	Retigabine	Anti convulsant Withdrawn from market	KCNQ
ΙĪ	9	Valproate	Anti epileptic	NaV inhibitor
	10	Mibefradil (Posicor)	Anti hypertensive Withdrawn from market	Calcium channel inhibitor
	11	Clozapine	Antipsycotic medication, also effective in treatment resistant schizopi	ohrenia Kv11.1 blocker
	12	Topiramate	To treat Epilepsy and migraine	
	13	Verapamil	To treat high blood pressure Calcium channel blocker	CaV blocker + some kir and kv
	14	Nifedipine	To treat high blood pressure & chest pain	CaV blocker
	15	Lamotrigine	To treat Epilepsy, bipoal disorder	CaV blocker
	16	Pemoline (Cylert)	To treat attention-deficit hyperactivity Withdrawn from market	ND
	17	Lithium	Antidepressant	Glutamate R 3
	18	Tamoxifen	Common Cancer drug	kv11.1 blocker
	19	NBQX	Synaptic blocker (AMPA)	
	20	APV	Synaptic blocker	
	21	4-Aminopyridine	Kv1 blocker	
	22	ZD7288	HCN blocker	

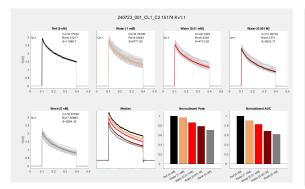
Drug Screening (Experiment setup)

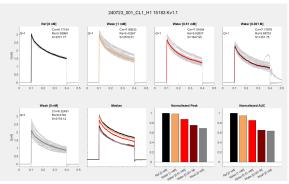


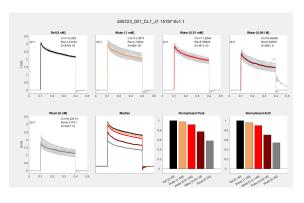

24-well

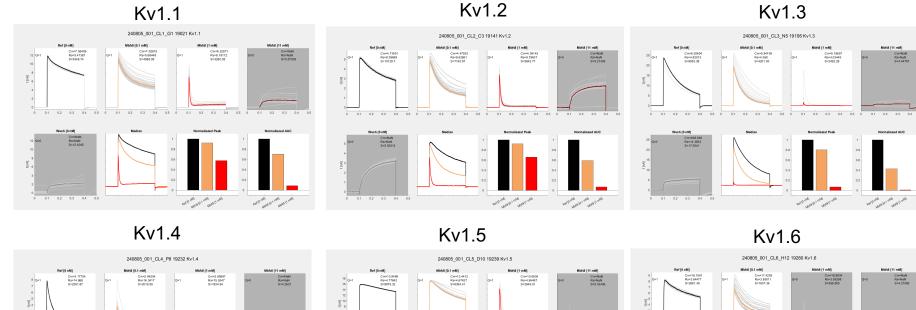


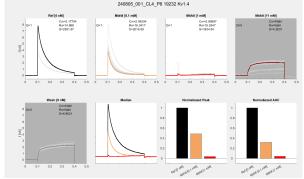


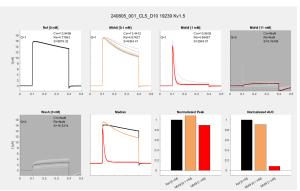


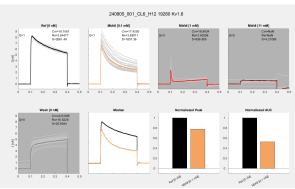

Drug Screening Data (Kv1.1 control)



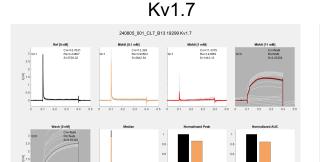


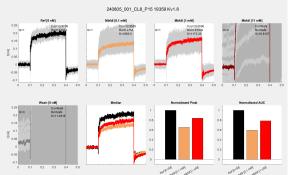


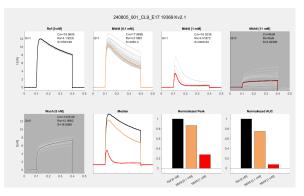


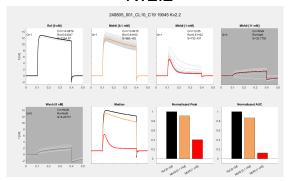


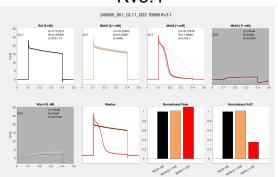
Drug Screening Data (Mibefradil)

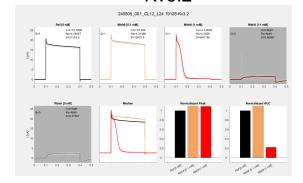




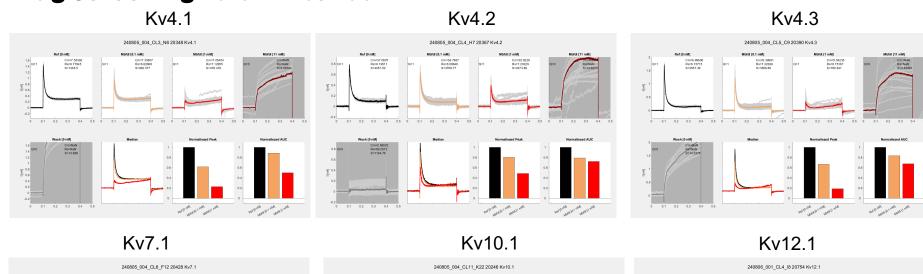

Drug Screening Data (Mibefradil)

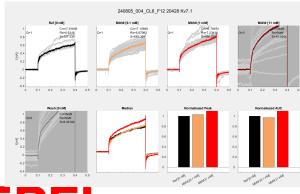


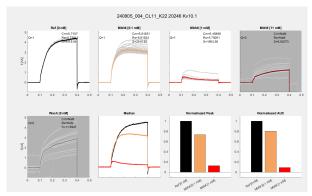

Kv2.1

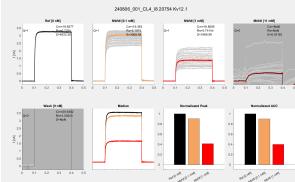

Kv2.2

Kv3.1

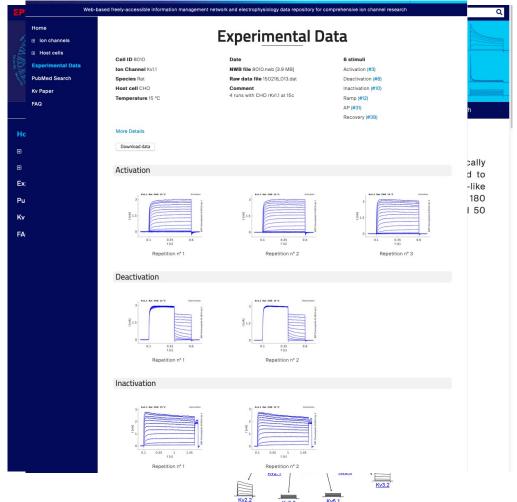


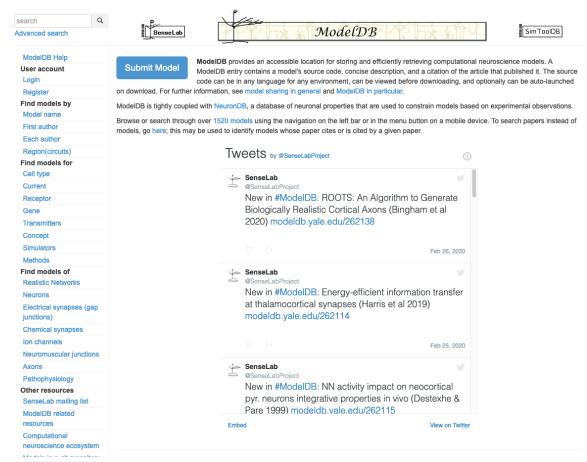

Kv3.2





Drug Screening Data (Mibefradil)

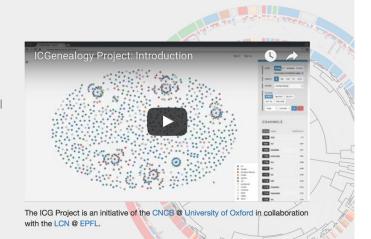



Channelpedia ModelDB Icgenealogy IUPHAR

https://channelpedia.epfl.ch

Channelpedia ModelDB Icgenealogy IUPHAR

https://senselab.med.yale.edu/modeldb/


ModelDB Channelpedia Icgenealogy IUPHAR

Ion Channel Genealogy

Our database provides a comprehensive and quantitative assay of ion channel models currently available in the neuroscientific modeling community, all browsable in interactive visualizations.

Currently, the database contains **2378 ion channels** written for the NEURON simulator.

Learn more »

Channel Browser

A graphical user interface to all channels currently available in our database. We offer several interactive data views to best help you choose ion channel models.

Browse channels »

Contribute

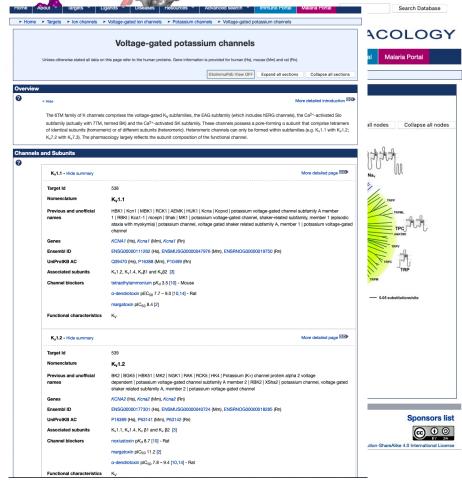
Together we can improve ICG! Upload your own channel models or submit tickets to correct existing ones should you find errors in our database.

Submit a channel »

Create a ticket »

API

All our data is accessible via an API. This enables you to run automated evaluations against current traces, or simply evaluate the metadata.


View API description»

http://icg.neurotheory.ox.ac.uk

Podlaski WF, Seeholzer A, Groschner LN, Miesenböck G, Ranjan R, Vogels TP. Mapping the function of neuronal ion channels in model and experiment. *Elife*. 2017;6:e22152. Published 2017 Mar 6. doi:10.7554/eLife.22152

ModelDB Channelpedia Icgenealogy IUPHAR

https://www.guidetopharmacology.org/

Summary 3

- Ion channels are implicated in many different diseases
- Ion channel kinetics are very sensitive to temperature
- Automated patch clamp and high throughput screening provides access to missing experimental data
- Ion channels are implicated/linked to majority of experimental neuroscience research

The team

Cloning and Cell line generation: Emmanuelle Logette, Mirjia Herzog, Magali Joffraud, Valerie Buchillier, Michela Marani, Valerie Tache

Patch clamp experiments, Analysis and H-H models: Rajnish Ranjan, Stijn Van Dorp, Hervé Arulkandrajah, Valerie Tache, Mirjia Herzog, Magali Joffraud, Balazs Kovacs, Charlotte Lorin, Maurizio Pezzoli

Data management : Rajnish Ranjan, Enrico Scantamburlo, Liviu Soltuzu, Luca Gambazzi, Georges Khazen, Dejan Jovandic, Anthony Njoku

Single cell modelling : Darshan Mandge, Cells team, Yann Roussel Molecular systems

External support: Nadine Becker, Nanion support team BBP team, LNMC team, EPFL

Funding

The EPFL Blue Brain Project Fund and the ETH Board funding to the Blue Brain Project.

Thank you